

PROviding Computing solutions for ExaScale ChallengeS

Towards a New Paradigm for Programming Scientific Workflows

Reginald Cushing, Onno Valkering, Adam Belloum, Cees de Laat

24th Sep 2019, eScience conference – BD2DC, San Diego

PROCESS LOFAR: Low Frequency Array

Images courtesy of: ASTRON

LOFAR radio telescope – is a "distributed software telescope" consisting of ~88.000 antennas in ~51 stations scattered over Europe. It produces up to 1.6 TB/s of raw data, processed real time to combine the signals of multiple antennas (correlation). This results in up to 35 TB/h of intermediate data (visibilities) which is stored for further analysis.

PROCESS SKA: Square Kilometer Array

Operational in 2022+

130K ~ 1M (LOFAR-style) antenna in Australia + 200 ~ 2000 dishes in South Africa

Wider frequency range and higher sensitivity and survey speed than existing telescopes

Zettabytes/year raw data volumes

130~300PB/year of correlated data

Huge data and processing problem

PROCESS Overview of hardware locations

PROCESS Running applications on dispersed resources

Applications

trigger staging ~1.2 GB x 244 Imaging and Calibration Step 3: Direction Dependent Pipelin

Dispersed Resources

Complex Mapping

PROCESS Challenges

Application

 How to facilitate rapid pipeline <u>development</u> and <u>deployment</u> on heterogenous resources?

Infrastructure

 How to setup <u>complex infrastructures</u> that can facilitate applications in their requirements?

Middleware

 How to <u>scale</u> applications from locally tuned clusters to <u>multi-datacenter</u> deployments?

PROCESS Challenges

Data

 How to <u>smartly transfer</u> data to make the most of the underlying infrastructure.

Security & Privacy

 How to create secure scientific pipelines that process <u>sensitive data</u> on distributed infrastructures using <u>dispersed resources</u>?

PROCESS A full-stack approach

Challenges cover all layers

- In order to address these challenges it is required to <u>control</u> the entire stack, i.e. both applications and networking.
- A full-stack approach lets us <u>fine-tune the interaction</u> between application and dispersed resources.

Workflow Management Systems ?

- Traditional workflow systems don't model the underlying infrastructure, and usually target a static deployment.
- We need a <u>more expressive</u> language than typical flow-charts.

PROCESS Programmable infrastructure

Programmability

- Higher-level programming languages and DSLs are known to be very expressive, while still being relatively user-friendly.
- These can be used to describe the complex mapping between applications and resources. Essentially making the turning the (mapping-)application into the orchestrator:

PROCESS Virtualized micro-architecture

Move towards a <u>flat</u> and <u>container-centric</u> micro-architecture.

- Adaptable through a hyper-converged container runtime.
- Dynamic through programmable application orchestration.
- Efficient through on-demand provisioning and elastic scaling.

PROCESS Reference architecture

Applications are leading for what components will be provisioned.

Container runtime abstracts away from heterogeneous and dispersed resources.

Choreography is effectuated though an reactive and event-driven (mapping)application.

PROCESS Programming with containers

Containerized functions

- Encapsulates <u>arbitrary</u> compute routines
- Docker for Cloud, Singularity for HPCs
- Specify the functions that are exposed by the services or compute routine.

Registry of functions

- Keeps track of the available functions
- Used for <u>discovery</u> and documentation
- Composable building blocks

PROCESS Programming with containers

Coordination scripts

- <u>Hierarchical</u> compute routines
- Using an existing/familiar language
- Registered in the <u>registry</u>

Import containerized functions

 Generated <u>stubs</u> are used to represent containerized functions inside the IDE.

```
import { stage } from './lofar-lta';
stage(2432018)
               stage(observation: number): string[]
               The ID of the observation
               This function stages an observation at the LOFAR LTA.
                @return — An array of SURLs of the staged files.
```


Coordinator / Infrastructure Units

- Starts the application by generating initial events.
- Contributes the <u>event-loop</u> to process events.
- Resolves events to function-execution invocations.

Data Unit

- Resource access is abstracted through <u>adapters</u> containers.
- Transfer between dispersed locations using <u>DTNs</u>.

PROCESS Conclusions

- Challenges of future scientific applications stem from all layers of the stack. Programmable micro-infrastructures allow us to address all of these challenges.
- Outlined the basic components that are needed to create isolated, portable and scalable micro-infrastructures.

Future work

- Implementing a proof of concept based on the reference architecture.
- Open-source and available on GH: <u>https://github.com/brane-ri</u>

PROviding Computing solutions for ExaScale ChallengeS

Towards a New Paradigm for Programming Scientific Workflows

Reginald Cushing, Onno Valkering, Adam Belloum, Cees de Laat

24th Sep 2019, eScience conference – BD2DC, San Diego

